Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 114012, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38573856

RESUMO

Plasmodium falciparum is a human-adapted apicomplexan parasite that causes the most dangerous form of malaria. P. falciparum cysteine-rich protective antigen (PfCyRPA) is an invasion complex protein essential for erythrocyte invasion. The precise role of PfCyRPA in this process has not been resolved. Here, we show that PfCyRPA is a lectin targeting glycans terminating with α2-6-linked N-acetylneuraminic acid (Neu5Ac). PfCyRPA has a >50-fold binding preference for human, α2-6-linked Neu5Ac over non-human, α2-6-linked N-glycolylneuraminic acid. PfCyRPA lectin sites were predicted by molecular modeling and validated by mutagenesis studies. Transgenic parasite lines expressing endogenous PfCyRPA with single amino acid exchange mutants indicated that the lectin activity of PfCyRPA has an important role in parasite invasion. Blocking PfCyRPA lectin activity with small molecules or with lectin-site-specific monoclonal antibodies can inhibit blood-stage parasite multiplication. Therefore, targeting PfCyRPA lectin activity with drugs, immunotherapy, or a vaccine-primed immune response is a promising strategy to prevent and treat malaria.


Assuntos
Eritrócitos , Plasmodium falciparum , Polissacarídeos , Proteínas de Protozoários , Humanos , Antígenos de Protozoários/metabolismo , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/genética , Eritrócitos/parasitologia , Eritrócitos/metabolismo , Lectinas/metabolismo , Lectinas/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética
2.
mBio ; 12(4): e0181921, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34340539

RESUMO

The Helicobacter pylori chemoreceptor TlpA plays a role in dampening host inflammation during chronic stomach colonization. TlpA has a periplasmic dCache_1 domain, a structure that is capable of sensing many ligands; however, the only characterized TlpA signals are arginine, bicarbonate, and acid. To increase our understanding of TlpA's sensing profile, we screened for diverse TlpA ligands using ligand binding arrays. TlpA bound seven ligands with affinities in the low- to middle-micromolar ranges. Three of these ligands, arginine, fumarate, and cysteine, were TlpA-dependent chemoattractants, while the others elicited no response. Molecular docking experiments, site-directed point mutants, and competition surface plasmon resonance binding assays suggested that TlpA binds ligands via both the membrane-distal and -proximal dCache_1 binding pockets. Surprisingly, one of the nonactive ligands, glucosamine, acted as a chemotaxis antagonist, preventing the chemotaxis response to chemoattractant ligands, and acted to block the binding of ligands irrespective of whether they bound the membrane-distal or -proximal dCache_1 subdomains. In total, these results suggest that TlpA senses multiple attractant ligands as well as antagonist ones, an emerging theme in chemotaxis systems. IMPORTANCE Numerous chemotactic bacterial pathogens depend on the ability to sense a diverse array of signals through chemoreceptors to achieve successful colonization and virulence within their host. The signals sensed by chemoreceptors, however, are not always fully understood. This is the case for TlpA, a dCache_1 chemoreceptor of H. pylori that enables the bacterium to induce less inflammation during chronic infections. H. pylori causes a significant global disease burden, which is driven by the development of gastric inflammation. Accordingly, it is essential to understand the processes by which H. pylori modulates host inflammation. This work uncovers the signals that TlpA can sense and highlights the underappreciated ability to regulate chemotactic responses by antagonistic chemoreceptor ligands, which is an emerging theme among other chemotactic systems.


Assuntos
Proteínas de Bactérias/metabolismo , Células Quimiorreceptoras/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas de Bactérias/genética , Quimiotaxia , Glucosamina/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Mutação Puntual
3.
mBio ; 12(2)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758087

RESUMO

The lipooligosaccharide (LOS) of Neisseria gonorrhoeae plays key roles in pathogenesis and is composed of multiple possible glycoforms. These glycoforms are generated by the process of phase variation and by differences in the glycosyltransferase gene content of particular strains. LOS glycoforms of N. gonorrhoeae can be terminated with an N-acetylneuraminic acid (Neu5Ac), which imparts resistance to the bactericidal activity of serum. However, N. gonorrhoeae cannot synthesize the CMP-Neu5Ac required for LOS biosynthesis and must acquire it from the host. In contrast, Neisseria meningitidis can synthesize endogenous CMP-Neu5Ac, the donor molecule for Neu5Ac, which is a component of some meningococcal capsule structures. Both species have an almost identical LOS sialyltransferase, Lst, that transfers Neu5Ac from CMP-Neu5Ac to the terminus of LOS. Lst is homologous to the LsgB sialyltransferase of nontypeable Haemophilus influenzae (NTHi). Studies in NTHi have demonstrated that LsgB can transfer keto-deoxyoctanoate (KDO) from CMP-KDO to the terminus of LOS in place of Neu5Ac. Here, we show that Lst can also transfer KDO to LOS in place of Neu5Ac in both N. gonorrhoeae and N. meningitidis Consistent with access to the pool of CMP-KDO in the cytoplasm, we present data indicating that Lst is localized in the cytoplasm. Lst has previously been reported to be localized on the outer membrane. We also demonstrate that KDO is expressed as a terminal LOS structure in vivo in samples from infected women and further show that the anti-KDO monoclonal antibody 6E4 can mediate opsonophagocytic killing of N. gonorrhoeae Taken together, these studies indicate that KDO expressed on gonococcal LOS represents a new antigen for the development of vaccines against gonorrhea.IMPORTANCE The emergence of multidrug-resistant N. gonorrhoeae strains that are resistant to available antimicrobials is a current health emergency, and no vaccine is available to prevent gonococcal infection. Lipooligosaccharide (LOS) is one of the major virulence factors of N. gonorrhoeae The sialic acid N-acetylneuraminic acid (Neu5Ac) is present as the terminal glycan on LOS in N. gonorrhoeae In this study, we made an unexpected discovery that KDO can be incorporated as the terminal glycan on LOS of N. gonorrhoeae by the alpha-2,3-sialyltransferase Lst. We showed that N. gonorrhoeae express KDO on LOS in vivo and that the KDO-specific monoclonal antibody 6E4 can direct opsonophagocytic killing of N. gonorrhoeae These data support further development of KDO-LOS structures as vaccine antigens for the prevention of infection by N. gonorrhoeae.


Assuntos
Gonorreia/prevenção & controle , Lipopolissacarídeos/metabolismo , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/genética , Sialiltransferases/genética , Sialiltransferases/metabolismo , Antígenos de Bactérias/análise , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Vacinas Bacterianas , Colo do Útero/microbiologia , Células Epiteliais/microbiologia , Feminino , Humanos , Lipopolissacarídeos/genética , Lipopolissacarídeos/imunologia , Ácido N-Acetilneuramínico/metabolismo , Neisseria gonorrhoeae/patogenicidade , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fagocitose/imunologia , beta-Galactosídeo alfa-2,3-Sialiltransferase
4.
mBio ; 11(2)2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127453

RESUMO

In the absence of a vaccine, multidrug-resistant Neisseria gonorrhoeae has emerged as a major human health threat, and new approaches to treat gonorrhea are urgently needed. N. gonorrhoeae pili are posttranslationally modified by a glycan that terminates in a galactose. The terminal galactose is critical for initial contact with the human cervical mucosa via an interaction with the I-domain of complement receptor 3 (CR3). We have now identified the I-domain galactose-binding epitope and characterized its galactose-specific lectin activity. Using surface plasmon resonance and cellular infection assays, we found that a peptide mimic of this galactose-binding region competitively inhibited the N. gonorrhoeae-CR3 interaction. A compound library was screened for potential drugs that could similarly prohibit the N. gonorrhoeae-CR3 interaction and be repurposed as novel host-targeted therapeutics for multidrug-resistant gonococcal infections in women. Two drugs, methyldopa and carbamazepine, prevented and cured cervical cell infection by multidrug-resistant gonococci by blocking the gonococcal-CR3 I-domain interaction.IMPORTANCE Novel therapies that avert the problem of Neisseria gonorrhoeae with acquired antibiotic resistance are urgently needed. Gonococcal infection of the human cervix is initiated by an interaction between a galactose modification made to its surface appendages, pili, and the I-domain region of (host) complement receptor 3 (CR3). By targeting this crucial gonococcal-I-domain interaction, it may be possible to prevent cervical infection in females. To this end, we identified the I-domain galactose-binding epitope of CR3 and characterized its galactose lectin activity. Moreover, we identified two drugs, carbamazepine and methyldopa, as effective host-targeted therapies for gonorrhea treatment. At doses below those currently used for their respective existing indications, both carbamazepine and methyldopa were more effective than ceftriaxone in curing cervical infection ex vivo This host-targeted approach would not be subject to N. gonorrhoeae drug resistance mechanisms. Thus, our data suggest a long-term solution to the growing problem of multidrug-resistant N. gonorrhoeae infections.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Colo do Útero/citologia , Reposicionamento de Medicamentos , Células Epiteliais/efeitos dos fármacos , Neisseria gonorrhoeae/efeitos dos fármacos , Receptores de Complemento/antagonistas & inibidores , Carbamazepina/farmacologia , Células Cultivadas , Farmacorresistência Bacteriana Múltipla , Células Epiteliais/microbiologia , Feminino , Galactose/metabolismo , Humanos , Metildopa/farmacologia , Receptores de Complemento/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas
5.
Infect Immun ; 88(4)2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-31964742

RESUMO

Neisseria meningitidis, a common cause of sepsis and bacterial meningitis, infects the meninges and central nervous system (CNS), primarily via paracellular traversal across the blood-brain barrier (BBB) or blood-cerebrospinal fluid barrier. N. meningitidis is often present asymptomatically in the nasopharynx, and the nerves extending between the nasal cavity and the brain constitute an alternative route by which the meningococci may reach the CNS. To date, the cellular mechanisms involved in nerve infection are not fully understood. Peripheral nerve glial cells are phagocytic and are capable of eliminating microorganisms, but some pathogens may be able to overcome this protection mechanism and instead infect the glia, causing cell death or pathology. Here, we show that N. meningitidis readily infects trigeminal Schwann cells (the glial cells of the trigeminal nerve) in vitro in both two-dimensional and three-dimensional cell cultures. Infection of trigeminal Schwann cells may be one mechanism by which N. meningitidis is able to invade the CNS. Infection of the cells led to multinucleation and the appearance of atypical nuclei, with the presence of horseshoe nuclei and the budding of nuclei increasing over time. Using sequential window acquisition of all theoretical mass spectra (SWATH-MS) proteomics followed by bioinformatics pathway analysis, we showed that N. meningitidis induced protein alterations in the glia that were associated with altered intercellular signaling, cell-cell interactions, and cellular movement. The analysis also suggested that the alterations in protein levels were consistent with changes occurring in cancer. Thus, infection of the trigeminal nerve by N. meningitidis may have ongoing adverse effects on the biology of Schwann cells, which may lead to pathology.


Assuntos
Interações Hospedeiro-Patógeno , Neisseria meningitidis/crescimento & desenvolvimento , Neisseria meningitidis/patogenicidade , Células de Schwann/microbiologia , Células de Schwann/patologia , Nervo Trigêmeo/citologia , Animais , Células Cultivadas , Camundongos Transgênicos , Proteoma/análise , Proteômica
6.
mBio ; 10(4)2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289181

RESUMO

Neisseria gonorrhoeae is a significant threat to global health for which a vaccine and novel treatment options are urgently needed. Glycans expressed by human cells are commonly targeted by pathogens to facilitate interactions with the host, and thus characterization of these interactions can aid identification of bacterial receptors that can be exploited as vaccine and/or drug targets. Using glycan array analysis, we identified 247 specific interactions between N. gonorrhoeae and glycans representative of those found on human cells. Interactions included those with mannosylated, fucosylated, and sialylated glycans, glycosaminoglycans (GAGs), and glycans terminating with galactose (Gal), N-acetylgalactosamine (GalNAc), and N-acetylglucosamine (GlcNAc). By investigating the kinetics of interactions with selected glycans, we demonstrate that whole-cell N. gonorrhoeae has a high affinity for mannosylated glycans (dissociation constant [KD ], 0.14 to 0.59 µM), which are expressed on the surface of cervical and urethral epithelial cells. Using chromatography coupled with mass spectrometric (MS) analysis, we identified potential mannose-binding proteins in N. gonorrhoeae Pretreatment of cells with mannose-specific lectin (concanavalin A) or free mannose competitor (α-methyl-d-mannopyranoside) substantially reduced gonococcal adherence to epithelial cells. This suggests that N. gonorrhoeae targets mannosyl glycans to facilitate adherence to host cells and that mannosides or similar compounds have the potential to be used as a novel treatment option for N. gonorrhoeaeIMPORTANCE Multidrug-resistant strains of Neisseria gonorrhoeae are emerging worldwide, and novel treatment and prevention strategies are needed. Glycans are ubiquitously expressed by all human cells and can be specifically targeted by pathogens to facilitate association with host cells. Here we identify and characterize the N. gonorrhoeae host-glycan binding profile (glycointeractome), which revealed numerous interactions, including high-affinity binding to mannosyl glycans. We identify gonococcal potential mannose-binding proteins and show that N. gonorrhoeae uses mannosyl glycans expressed on the surface of cervical and urethral epithelia to facilitate adherence. Furthermore, a mannose-binding lectin or a mannoside compound was able to reduce this adherence. By characterizing the glycointeractome of N. gonorrhoeae, we were able to elucidate a novel mechanism used by this important pathogen to interact with human cells, and this interaction could be exploited to develop novel therapeutics to treat antibiotic-resistant gonorrhea.


Assuntos
Aderência Bacteriana/fisiologia , Colo do Útero/citologia , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Neisseria gonorrhoeae/metabolismo , Polissacarídeos/metabolismo , Uretra/citologia , Aderência Bacteriana/efeitos dos fármacos , Células Cultivadas , Concanavalina A/farmacologia , Células Epiteliais/efeitos dos fármacos , Feminino , Gonorreia/microbiologia , Humanos , Masculino , Lectina de Ligação a Manose/metabolismo , Metilglicosídeos/farmacologia , Análise em Microsséries , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/patogenicidade
7.
PLoS One ; 12(8): e0182555, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28771632

RESUMO

The emergence of multi-drug resistant Neisseria gonorrhoeae has generated an urgent need for novel therapies or a vaccine to prevent gonococcal disease. In this study we investigate the potential of targeting the surface exposed nitrite reductase, AniA, to block activity by producing functional blocking antibodies. AniA activity is essential for anaerobic growth and biofilm formation of N. gonorrhoeae and functional blocking antibodies may prevent colonisation and disease. Seven peptides covering regions adjacent to the active site were designed based on the AniA structure. Six of the seven peptide conjugates generated immune responses. Peptide 7, GALGQLKVEGAEN, was able to elicit antibodies capable of blocking AniA activity. Antiserum raised against the peptide 7 conjugate detected AniA in 20 N. gonorrhoeae clinical isolates. Recombinant AniA protein antigens were also assessed in this study and generated high-titre, functional blocking antibody responses. Peptide 7 conjugates or truncated recombinant AniA antigens have potential for inclusion in a vaccine against N. gonorrhoeae.


Assuntos
Anticorpos Bloqueadores/imunologia , Antígenos de Bactérias/química , Proteínas da Membrana Bacteriana Externa/química , Neisseria gonorrhoeae/enzimologia , Peptídeos/imunologia , Animais , Anticorpos Bloqueadores/administração & dosagem , Anticorpos Bloqueadores/química , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Domínio Catalítico , Feminino , Imunização , Camundongos , Neisseria gonorrhoeae/imunologia , Peptídeos/agonistas , Peptídeos/síntese química , Coelhos , Proteínas Recombinantes/imunologia
8.
Sci Rep ; 7(1): 1495, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28473713

RESUMO

Subtilase cytotoxin (SubAB) of Escherichia coli is an AB5 class bacterial toxin. The pentameric B subunit (SubB) binds the cellular carbohydrate receptor, α2-3-linked N-glycolylneuraminic acid (Neu5Gc). Neu5Gc is not expressed on normal human cells, but is expressed by cancer cells. Elevated Neu5Gc has been observed in breast, ovarian, prostate, colon and lung cancer. The presence of Neu5Gc is prognostically important, and correlates with invasiveness, metastasis and tumour grade. Neu5Gc binding by SubB suggests that it may have utility as a diagnostic tool for the detection Neu5Gc tumor antigens. Native SubB has 20-fold less binding to N-acetlylneuraminic acid (Neu5Ac); over 30-fold less if the Neu5Gc linkage was changed from α2-3 to α2-6. Using molecular modeling approaches, site directed mutations were made to reduce the α2-3 [Formula: see text] α2-6-linkage preference, while maintaining or enhancing the selectivity of SubB for Neu5Gc over Neu5Ac. Surface plasmon resonance and glycan array analysis showed that the SubBΔS106/ΔT107 mutant displayed improved specificity towards Neu5Gc and bound to α2-6-linked Neu5Gc. SubBΔS106/ΔT107 could discriminate NeuGc- over Neu5Ac-glycoconjugates in ELISA. These data suggest that improved SubB mutants offer a new tool for the testing of biological samples, particularly serum and other fluids from individuals with cancer or suspected of having cancer.


Assuntos
Lectinas/química , Ácidos Neuramínicos/química , Animais , Sítios de Ligação , Bovinos , Ensaio de Imunoadsorção Enzimática , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Mutação/genética , Engenharia de Proteínas , Subtilisinas/química , Subtilisinas/genética , Ressonância de Plasmônio de Superfície
9.
PLoS Pathog ; 9(5): e1003377, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23696740

RESUMO

Pili of pathogenic Neisseria are major virulence factors associated with adhesion, twitching motility, auto-aggregation, and DNA transformation. Pili of N. meningitidis are subject to several different post-translational modifications. Among these pilin modifications, the presence of phosphorylcholine (ChoP) and a glycan on the pilin protein are phase-variable (subject to high frequency, reversible on/off switching of expression). In this study we report the location of two ChoP modifications on the C-terminus of N. meningitidis pilin. We show that the surface accessibility of ChoP on pili is affected by phase variable changes to the structure of the pilin-linked glycan. We identify for the first time that the platelet activating factor receptor (PAFr) is a key, early event receptor for meningococcal adherence to human bronchial epithelial cells and tissue, and that synergy between the pilin-linked glycan and ChoP post-translational modifications is required for pili to optimally engage PAFr to mediate adherence to human airway cells.


Assuntos
Aderência Bacteriana , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Neisseria meningitidis/metabolismo , Processamento de Proteína Pós-Traducional , Mucosa Respiratória/metabolismo , Linhagem da Célula , Membrana Celular/microbiologia , Células Epiteliais/microbiologia , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Humanos , Neisseria meningitidis/genética , Neisseria meningitidis/patogenicidade , Fosforilcolina/metabolismo , Mucosa Respiratória/microbiologia
10.
Biochem Biophys Res Commun ; 431(4): 808-14, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23274496

RESUMO

Neisseria meningitidis is a human pathogen that can cause life threatening meningitis and sepsis. Pili of Neisseria are one of the major virulence factors in host-pathogen interaction. Pilin of N.meningitidis is post-translationally modified by a glycan and two phosphorylcholines (ChoP). ChoP modifications have been found to have an important role in bacterial colonisation and invasion. Unlike N. gonorrhoeae, ChoP modifications on pili seem to be restricted to the C-terminus of pilin protein in N. meningitidis. In this study, we investigate the substrate recognition of phosphorylcholine transferase. We found that a single sequence of D-A-S after the disulphide bond of pilin protein is able to form a motif for ChoP modifications and the charge residue in this motif and the local structure are essential for the substrate recognition.


Assuntos
Proteínas de Fímbrias/metabolismo , Neisseria meningitidis/metabolismo , Fosforilcolina/metabolismo , Processamento de Proteína Pós-Traducional , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Motivos de Aminoácidos , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Cisteína/química , Cisteína/metabolismo , Proteínas de Fímbrias/química , Dados de Sequência Molecular , Neisseria meningitidis/patogenicidade , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Especificidade por Substrato
11.
Cell Microbiol ; 13(6): 885-96, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21371235

RESUMO

Expression of type IV pili by Neisseria gonorrhoeae plays a critical role in mediating adherence to human epithelial cells. Gonococcal pilin is modified with an O-linked glycan, which may be present as a di- or monosaccharide because of phase variation of select pilin glycosylation genes. It is accepted that bacterial proteins may be glycosylated; less clear is how the protein glycan may mediate virulence. Using primary, human, cervical epithelial (i.e. pex) cells, we now provide evidence to indicate that the pilin glycan mediates productive cervical infection. In this regard, pilin glycan-deficient mutant gonococci exhibited an early hyper-adhesive phenotype but were attenuated in their ability to invade pex cells. Our data further indicate that the pilin glycan was required for gonococci to bind to the I-domain region of complement receptor 3, which is naturally expressed by pex cells. Comparative, quantitative, infection assays revealed that mutant gonococci lacking the pilin glycan did not bind to the I-domain when it is in a closed, low-affinity conformation and cannot induce an active conformation to complement receptor 3 during pex cell challenge. To our knowledge, these are the first data to directly demonstrate how a protein-associated bacterial glycan may contribute to pathogenesis.


Assuntos
Células Epiteliais/microbiologia , Proteínas de Fímbrias/metabolismo , Antígeno de Macrófago 1/metabolismo , Neisseria gonorrhoeae/patogenicidade , Polissacarídeos/metabolismo , Aderência Bacteriana , Células Cultivadas , Endocitose , Feminino , Glicosilação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA